Dizziness in Discus Throwers is Related to Motion Sickness Generated While Spinning

Philippe Perrin, Cyril Perrot, Dominique Deviterne, Bruno Ragaru, Herman Kingma

To cite this article: Philippe Perrin, Cyril Perrot, Dominique Deviterne, Bruno Ragaru, Herman Kingma (2000) Dizziness in Discus Throwers is Related to Motion Sickness Generated While Spinning, Acta Oto-Laryngologica, 120:3, 390-395, DOI: 10.1080/000164800750000621

To link to this article: http://dx.doi.org/10.1080/000164800750000621

Published online: 08 Jul 2009.
Dizziness in Discus Throwers is Related to Motion Sickness Generated While Spinning

PHILIPPE PERRIN1,2,3, CYRIL PERROT2,3, DOMINIQUE DEVITERNE4, BRUNO RAGARU2 and HERMAN KINGMA5

1From the 1Department of Otorhinolaryngology, University Hospital, Nancy, 2Equilibration et Performance Motrice, UFR STAPS, University Henri Poincaré-Nancy 1, Villers-lès-Nancy, 3National Institut for Health and Medical Research (INSERM), Faculty of Medicine, Vandoeuvre-lès-Nancy, 4IUFM de Lorraine, Nancy, France, and the 5Division of Balance Disorders Research, Department of Otorhinolaryngology, University Hospital Maastricht, Research Institute Brain and Behaviour, Maastricht University, The Netherlands

Acta Otolaryngol 2000; 120: 390–395

While both discus and hammer throwing involve rotating movements resulting in the throw of an object, discus throwers sometimes report dizziness, a condition never experienced by hammer throwers. We investigated whether this susceptibility was related to the sensitivity of the thrower or to the type of throwing achieved. For the latter, we compared the determining features of gesture, gaze stabilization and projectile trajectory in both sports. A total of 22 high-level sportsmen in these 2 disciplines, half of them practising both sports, were interviewed. Slow motion video recordings of discus and hammer throwing were examined to determine the visual referential, head movements and plantar surface support area involved at each stage of the motions. Discomfort was reported by 59% of the sportsmen while throwing discus, but by none while throwing hammer. Because several individuals practised both sports, these results exclude the hypothesis of individual susceptibility to dizziness. Video analysis evidenced that during hammer throwing, visual bearings can be used more easily than during discus throwing. Moreover, there is a loss of plantar afferents and generation of head movements liable to induce motion sickness, such as Coriolis acceleration. In conclusion, although hammer and discus throwing present numerous similarities, we demonstrate here that crucial differences in the specific execution of each sport are responsible for the dizziness experienced by discus throwers. Key words: dizziness, motion sickness, throw, vestibulo-ocular reflex, visual input.

INTRODUCTION

During voluntary movements, motor organization takes place at least on three different levels: evaluation and integration of sensory information; decision-making; and motor response. The vestibular function contributes to balance control, gaze stabilization and spatial orientation in static and dynamic situations. Congruous vestibular, visual and proprioceptive inputs are necessary to regulate efficiently the upright stance (1, 2), which also depends on and serves to motor control involved in voluntary and automatic corrections of the position of the limbs, trunk and head (3, 4). Vestibular, visual and podal afferents contribute to spatial orientation, while articular and muscular receptors inform the central nervous system (CNS) on the relative positions of the various body segments (5). Visual inputs ensure an analysis of the structural and spatio-temporal characteristics of the surroundings (6–8). Proprioception and specially plantar sensitivity contribute to the central programming of precision movements, the former being mediated by sensorial cues relative to position, joints orientation and movement and deformation of cutaneous and muscular tissues (9–11). In experiments involving stance and sensorial perturbations, postural stabilization can be performed normally as long as at least two of the three afferent systems provide congruent information. It has also been suggested that the determination of subjective verticality, involved in balance and in the control of body movements depends on proper vestibular and visual afferences (1, 6). Moreover, these two sensory modalities are essential for gaze stabilization (12). In fact, the CNS makes use of several different mechanisms to achieve head and gaze stability, including the vestibulo-ocular, the vestibulo-collic and the cervico-collic reflexes (3, 13–15). During orientation and self-generated motor tasks, unusual variations in the stimulus (for example an unexpected increase of movement velocity, intensity or repetition) could affect the functionality of the mechanisms mentioned above, and generate subjective sensorial conflicting situations, such as vestibulo-ocular conflict or Coriolis forces (16, 17).

In sports such as discus or hammer throwing, the performance partly depends on the velocity acquired by the ballistic object during the subject’s revolution(s) (18). Several repetitions of body rotation, triggering considerable vestibular stimulation, might generate dizziness and nausea during training, head movements being classically identified as the dominant sickness-inducing stimuli (19, 20). In fact, during the acceleration phase of discus or hammer throwing, both the discrepancies in the information provided by different sensory modalities (i.e. due to the variation of pressor input from the feet and to visual vection)
and the stimulation of vestibular and neck proprioceptive systems, could be aetiological factors liable to induce subjective motion sickness symptoms, such as stomach discomfort, nausea, yawning or belching (21). This could also depend on individual susceptibility to motion sickness.

Here we investigated the incidence of motion sickness experienced by trained discus and hammer throwers, in an attempt to elucidate whether this susceptibility is related to the subject’s sensitivity (thrower) or to the nature of the situation (throwing). We also investigated precisely the motions specific for each of these sports, which could be involved in sensory conflict during discus throwing. Better knowledge of the different effects of these sports on dizziness could be beneficial to help dizzy discus throwers to change their behaviour and avoid this discomfort.

MATERIALS AND METHODS

Subjects
A total of 22 throwers, aged between 20 and 32 years (mean age ± SE = 28.3 ± 1.2), mostly members of the Athletics Federation, participated in this survey. Their mean duration of practice was 11 ± 3 years. Five 3-h training sessions per week were performed, in addition to competitions according to the specificities of the athletic season. At this high level of expertise, these athletes did not engage in other sports. Moreover, physical training is specific for both sport disciplines. None of the subjects had any history of inner ear, CNS or neck disorders. Sedative and alcoholic beverages were proscribed 48 h before the evaluation.

Methods
Interviews were conducted to determine which sport the subjects practised: hammer and/or discus throwing, whether they practised both, what their main discipline was and whether they had been experiencing dizziness while practising. For individuals involved in both discus and hammer throwing, the precise conditions of when discomfort was experienced were investigated.

In order to understand the aetiology of dizziness in discus throwing, 120 slow motion videos of 56 discus-and 64 hammer-throwings, respectively, were examined by taking into account the opinions of 3 neurophysiologists, 1 of them an ENT surgeon, and an elite athlete practising both sports studied here. A first examination of the videorecordings was made in order to deconstruct each throwing movement into different phases and steps, to determine their duration and list balance control patterns. The latter were:

(i) gaze fixation on the throwing area or on the horizon; (ii) gaze fixation on the implement; (iii) head movements; (iv) head-trunk deviation; and (v) plantar surface support area. A second examination was performed by the same jury in order to characterize the different phases according to the presence or absence of these five patterns.

Procedure, technical aspects and description of the movement
The aim of athletic throwing is to throw a projectile as far as possible following strict rules.

Discus throwing
The procedure of discus throwing (Fig. 1), which involves rotation and translation, comprises three successive parts. (i) First, the athlete, standing upright, sets the discus backwards as far as possible by rotating his trunk while keeping his head facing the throwing area and his eyes staring straight ahead at a point on the horizon. At that time, the axes of the sportsman’s hips and shoulders are orthogonal, as well as those of his shoulders and head. (ii) Next, the discus acceleration phase begins. There is a simultaneous rotation and forward translation of the thrower within the circle. At the end of this part, the thrower’s feet leave the ground (turning jump) and landing is accompanied by head and trunk flexions, liable to generate Coriolis acceleration. (iii) Finally, as he releases the discus, the thrower aligns his head, shoulders and hips, standing upright on the ground.

Fig. 1. Discus throwing. The three phases of the movement (see text) can be broken down into 11 steps: (a) phase 1; (b–f) phase 2; and (g–k) phase 3.
Hammer throwing
Hammer throwing can be split into four successive parts (Fig. 2), essentially involving rotation. (i) First, the athlete stands in a semi-sitting position, with his back to the throwing area and staring straight ahead at a point on the horizon. The implement is placed on the ground on the right side of the thrower (if the thrower is right-handed). (ii) Then, the athlete swings the hammer up above his left shoulder in a right-to-left motion, and whirls his arms round as rapidly as possible in order to accelerate the ballistic object. During this phase, his feet are still firmly set on the ground, and his head is tilted backward to avoid contacts with upper limbs. The athlete whirls the hammer twice above his head on his right, allowing an acceleration of the implement’s motion, while the lower limbs and head of the thrower remain almost immobile. This is a phase of acceleration of the implement, and not of the subject. (iii) Thirdly, the second hammer acceleration phase begins; during three or four consecutive revolutions of the thrower on himself within the circle, his head is straight and his gaze fixed on the hammer. The shoulders and hands (or head of the hammer) form an isosceles triangle. The subject in rotation alternatively stands on one foot (the implement induces the athlete to turn, which means it is not a phase of acceleration of the hammer) or on two feet (the athlete makes the implement turn, which means it is a phase of acceleration of the hammer). (iv) Finally, as the forward translation of the thrower in rotation stops, the athlete stretches his body while releasing the hammer. The sportsman’s head is slightly tilted backward and his gaze is stable in order to assess the hammer’s trajectory in space.

Statistical analysis
All comparisons were performed using χ^2 and McNemar tests with the Statview software.

RESULTS
Interviews
Eleven athletes were recruited for each of the two disciplines. Among the 11 discus throwers, 5 were also hammer throwers. Among the 11 hammer throwers, 6 were also discus throwers.

None of the 11 hammer throwing specialists experienced imbalance when throwing their projectile. Among the 11 discus throwing specialists, 7 experienced imbalance while throwing their projectile ($\chi^2 = 10.27$, degree of freedom $= 1$, $p < 0.001$) (Table I). Imbalance symptoms, when they occurred, were described as gait deviation to the opposite side of handedness, dizziness, loss of bearings, impression of being on a roundabout, need to stop because of discomfort. These symptoms were reported even by trained athletes and were exacerbated by cold. They also seemed to be worse during training than in competition. Nausea sometimes occurred, especially during indoor training, but no athlete reported vomiting.

When assessing the occurrence of symptoms in the 11 throwers practising both sports, we observed that out of the 6 hammer throwers also throwing discus, none of them showed symptoms of dizziness when they threw the hammer, while 3 of them did when they threw the discus. Similarly all five discus throwers also throwing the hammer reported symptoms of dizziness when they threw the discus, while none of them did when they threw the hammer (McNemar-$\chi^2 = 6.12$—degree of freedom $= 1$, $p < 0.02$).

The discus throwers who showed symptoms during competitions saw their symptoms worsen when doing multiple rotations during training.

Table I. Partition of the 22 throwers according to their discipline (hammer or discus throwing) and to their dizziness symptoms

<table>
<thead>
<tr>
<th>Dizziness</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discus throwers</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>Hammer throwers</td>
<td>0</td>
<td>11</td>
</tr>
</tbody>
</table>
Hammer throwers showed no symptoms whether in competition or training.

Video analysis
As indicated in materials and methods, the presence or absence of 5 types of patterns was examined for each of the 11 steps of discus throwing and of the 15 steps of hammer throwing. All sportsmen had remarkably similar behaviors in each sport and although there were small individual variations in the time allotted to each phase, positions were highly reproducible. Fig. 3 summarizes these observations, indicating the phases during which stabilizing criteria were present or not. The qualitative comparison of these chronograms showed striking differences between discus and hammer throwing. The most relevant difference was noted for gaze fixation on implement, which concerned 2/11 steps (j,k; 0,10s – 5% duration of the throwing) for discus throwing vs 12/15 (b, d to m, o; 3,17s – 70% duration of the throwing) for hammer throwing, and immobility of head vs trunk, which concerned 5/11 steps (a, b, i, j, k; 1,20s – 59% duration of the throwing) for discus throwing and 14/15 (a to n; 4,47s – 99% duration of the throwing) for hammer throwing. In discus throwing, 4 patterns were simultaneously absent during 6 of 11 steps (c to h; 0,92s – 46% duration of the throwing). This situation was never observed in hammer throwing, in which a maximum of two patterns were simultaneously absent. Absence of plantar surface support area was observed only for discus throwers, during step e characterized by the absence of all stability parameters.

DISCUSSION
Discus throwers experienced dizziness significantly more frequently than did hammer throwers, who do not report such discomfort while practising their sport. Here we also demonstrated that sportsmen performing both sports only experience dizziness symptoms when throwing the discus, indicating that susceptibility to dizziness is not related to the subject but to the discipline. This suggests that specificities of the gesture and movements involved in discus throwing must be implicated. Indeed, we were able to demonstrate significant differences between major parameters of control balance in both sports explaining the disorientation of discus throwers.

In sports requiring precise movement coordination during the execution of complex body rotations, the contribution of the various sensory systems to the maintenance and/or restoration of postural control depends on precise stimulus conditions in terms of velocity, acceleration and amplitude of the movement.

Spatial orientation plays a key role during fast rotatory accelerations combined with constant angular velocities as occurs in both discus and hammer throwing. During the rotations performed by both kind of throwers, visual orientation relative to the surroundings becomes impossible because of the high velocity at which the inhomogeneous visual scene impacts on the central retina, although the implement remains stable for hammer thrower. Thus, visual fixation, which is involved in the regulation of the balance as well as in the orientation of the subject, cannot be achieved using the surroundings.

While throwing discus, the lack of visual fixation prevents the suppression of the vestibular input during rotations. As a consequence, a strong post-rotatory vertigo, or in case of prolonged stimulation also a considerable per-rotatory vertigo may occur. Neither the smooth pursuit system, nor the vestibulo-ocular reflex, nor the opto-kinetic reflex can be used sufficiently to reduce these effects.

While throwing the hammer, target fixation allows visual suppression of the vestibular stimulation (22) and enables a fast spatial reorientation after the rotatory movement, therefore compensating balance and avoiding dizziness. In dance and ice-skating, turns can be even faster than those of throwers. During high-speed rotations, whereas body rotations are regular, those of the head occur in fits and starts, with short periods of fixation on an environmental target at each turn. In addition to the stabilization effect, visual fixation also contributes to the aesthetics of the exhibition. More especially in ice-skating, visual stabilization during rotation can be made by...
Often rely on multiple-rotation (multivolte) exercises, which requires the input of cervical proprioceptors. The freedom for the brain to detect spatial orientation, prompting motion sickness (25), and an extra degree of freedom for the brain to detect spatial orientation, resulting in the induction of dizziness.

In conclusion, this study demonstrates the reality of dizziness experienced by discus throwers as unrelated to individual susceptibility, but relying on precise physiological grounds and associated with specific phases of the motion involved in this sport.

REFERENCES

4. Perrin Ph, Schneider D, Deviterne D, Perrot C, Constantinescu L. Training improves the adaptation to

Submitted August 2, 1999; accepted January 13, 2000

Address for correspondence:
Prof. Philippe Perrin, MD PhD
Université Henri Poincaré – Nancy 1
Equilibration et Performance Motrice
UFR STAPS
30, rue du Jardin Botanique
FR-54 600 Villers-lès-Nancy
France